Plasma-catalytic hybrid methods for gaseous pollutant removal

Dr. Thomas Hammer

Siemens AG, Corporate Technology
Energy Conversion & Environment
Erlangen, Germany
Plasma-catalytic hybrid methods for gaseous pollutant removal: Contents

Introduction
Non-thermal plasma reactor concepts & NTP-generation
Plasma-catalytic hybrid reactor concepts
Catalyst properties
NTP-induced gas phase reactions of pollutants
Catalytic surface reactions of pollutants
NTP-catalytic hybrid conversion of pollutants
Example: Diesel exhaust after-treatment
 ▪ Electron collision reactions
 ▪ Plasma conversion of noxious compounds
 ▪ Plasma Enhanced Selective Catalytic Reduction
Conclusions
Introduction

- Off-gases from fossil fuelled energy conversion processes and industrial processes: NOx, CO, HCs, VOCs; concentrations ~ 0.1 % down to < 0.1 ppm
- Gas cleaning: Sorption processes, catalytic conversion, or non-thermal plasmas (NTP).

Advantages and shortcomings:

- Sorption processes:
 - Sorbents available for a wide range of gaseous compounds (+)
 - However, sorbents either need to be regenerated periodically or disposed as special waste when sorption capacity is exhausted (–)
 - Some compounds like elemental mercury do not absorb easily (–)

- Catalytic conversion of noxious compounds:
 - Generates stable, harmless final products if the off-gas fulfills certain requirements (e.g. \(\lambda \approx 1 \) for the 3-way catalyst) (+/–)
 - Gas heating may be required for activation (\(\rightarrow \) energy efficiency) (–)

- Non-thermal plasmas (NTP):
 - Efficient generation of reactive radicals (+)
 - However, the reaction chains induced by these radicals often are neither very selective nor lead to complete conversion of the noxious compound to the desired final product (–)
Plasma-Catalytic Hybrid Processes for Gas Cleaning

Plasma induced/enhanced selective catalytic NOx-reduction for automotive exhaust gases (SAG, Ford, Chrysler, LLNL, PNNL, ...)
- oxidation due to dielectric barrier discharge (DBD) pre-treatment
- non-precious metal catalyst & urea / fuel as a reducing agent
 - NOx-reduction in an oxidizing atmosphere
 - catalytic activity extended to low temperatures
 - sulfur tolerant

Plasma assisted catalytic oxidation of VOCs for the decontamination of ground water of industrial sites (IUT)
- extraction of VOCs from ground water by air stripping:
 - large gas flows, low gas temperature
- efficient plasma pre-treatment using dielectric barrier discharges
 - catalytic oxidation of the VOCs at low temperature (< 100 °C)

Sorption & plasma assisted oxidation of VOCs using oxygen plasma (AIST)
- Sorption of VOC from off-gas
- Regeneration of catalytic sorbent by oxygen plasma
 - Increased efficiency compared to direct plasma-catalytic conversion
Non-Thermal Plasma Reactor Concepts

Dielectric Barrier Discharges (DBD)

μ-Plasmatron Discharge

Dielectric Barrier Discharges inside of a catalytic monolith

DC + pulse corona

DC corona
Plasma-Catalytic Reactor Concepts

1-stage reactor (plasma in contact to catalytic surfaces)
Example: DPB reactor
- Dielectric properties of catalyst need to fit to application
- Direct interaction of plasma & catalyst enabled

2-stage reactor (no direct plasma–catalyst contact)
Example: DBD & catalyst
- Electrical conductivity of the catalyst doesn’t play a role
- Catalytic reactions initiated e.g. by metastable intermediate products
Dielectric Packed Bed Reactor
Influence of Catalyst Properties

Figure 4. ICCD images of discharge plasmas on the surface of zeolites. (16 kV_{\text{pk-pk}}, 50 Hz)

International Symposium on Non-Thermal/Thermal Plasma Pollution Control Technology & Sustainable Energy, ISNTP-7
June 21-25, 2010, St. John’s, Newfoundland, Canada
Hyun-Ha Kim, Atsushi Ogata (National Institute of Advanced Industrial Science and Technology (AIST)):
Catalyst Screening for the VOC Decomposition using Adsorption and Oxygen Plasma
Plasma Activation of Catalytic Reactions

Physical / chemical effects
Gas heating
Catalyst heating
Electric fields
Vibrational excitation
Dissociation
Ionization
UV radiation
Intermediate product formation
Electrical Excitation of NTP-Reactors
Pulsed Excitation of DBDs and PCDs: Thyatron switched Blumlein Circuit

- Max. load voltage 30 kV
- Max. pulse repetition frequency 10 kHz
- Max. pulse energy 126 mJ
- Voltage rise time 100 ns
- Voltage pulse duration 100 ns

- Expensive plasma switch
- Component lifetime limited
- Size and weight not acceptable for automotive applications
Power Modulator for PCD Operation: Electrical Concept

Core material: VAC Vitroperm 500Z
B_{sat} = 1.3 T
L_{us} = 6 mH
L_{sat} = 3.1 µH
Pulsed Electrical Excitation of DBDs: Semiconductor Switched Resonant Circuits

- Peak voltage 20 kV
- Max. pulse repetition frequency 20 kHz
- Max. pulse energy 45 mJ
- Voltage rise time 300 ns (10 % to 90 %)
- Voltage pulse duration 500 ns (FWHM)
- Reliable, low cost semiconductors
- Small low cost transformers
- Potential for compact design
NTP Electrical Properties & Chemistry

Electrical properties

- Depend on reactor type
 - Pulsed corona – large volume/surface ratio, large discharge gap
 - Dielectric barrier – large surface/volume ratio, small discharge gap; barrier properties; frequency (capacitive coupling)
 - Dielectric packed bed – intermediate surface/volume ratio & discharge gap; dielectric packed be properties; frequency (local capacitive coupling)

Chemistry

- Fast radical & ion formation (E/n) in active discharge region
 - Pulsed corona – streamer head
 - Dielectric barrier – µ-discharges; ionization waves; fully developed streamers; Atmospheric Pressure Glow Discharge

- Slow volume chemistry (chain reactions)
Short Pulse Excitation of DBDs with a Discharge Gap of 4 mm (PVS-1): NO-conversion as a Function of Electrical Energy Input

Voltage, current and pulse energy
- displacement current << discharge current
- reactive power << active power
- min. reactor impedance 70 Ohms

Diesel exhaust: $Q_v = 540$ liters(STP)/min, $T = 220$ °C

NO-conversion
- depends on specific energy only
- energy costs 9.2 Wh/g (50 % conv.)
Pulse Excitation of DBDs (PVS-2)
Influence of the Discharge Gap on Electrical properties

With increasing discharge gap:
- discharge ignition voltage increases
- discharge impedance increases from 1 to 6 kOhms
- pulse energy decreases from 19 to 6 mJ

Voltage, current and pulse energy
ICV = 310 V, T = 180 °C
Pulse Excitation of DBDs (PVS-2)
NO-Conversion as a Function of Specific Energy Input

![Graph showing NO-conversion as a function of specific energy input.](image)

NO-conversion at a discharge gap of 4 mm comparable to short pulse excitation (PVS-1)
- energy costs 9.2 Wh/g (50 % conv.)

At larger discharge gaps the maximum conversion rate is limited by
- reduced pulse energy input
- reduced conversion efficiency

DBD-reactor with a discharge gap of 4 mm, exhaust gas temperature 180 °C
DBD Treatment of Diesel Exhaust
Influence and Conversion of Hydrocarbons

Coaxial DBD-reactor with a structured HV-electrode, discharge gap 4 mm, sinusoidal excitation, frequency 1 kHz (synthetic gas mixture: 72 % N₂, 18 % O₂, 10 % H₂O, 500 ppm NO, 500 ppm C₂H₄, gas temperature 200 °C).

Improved conversion of NO to NO₂ due to HCs
Partial oxidation of hydrocarbons:
formation of aldehydes and CO
Oxidation of soot:

\[
\begin{align*}
O + C(s) &\rightarrow CO(s) \\
O + CO(s) &\rightarrow CO_2 \\
CO(s) &\rightarrow CO \\
NO_2 + C(s) &\rightarrow NO + CO(s)
\end{align*}
\]

Experiment:

- HCs were removed by partial oxidation (aldehydes, CO) and fragmentation
- Efficient oxidation of soot was observed on surfaces

Diesel exhaust: \(Q_v = 540 \, \text{NL/min}, \, T_{\text{gas}} = 220 \, ^\circ\text{C}, \, c(\text{HC}) \approx 500 \, \text{ppm} \, C_1; \, \text{DBD-reactor}: \, d_{\text{gap}} = 4 \, \text{mm}, \, A_{\text{flow}} = 5.15 \, \text{cm}^2, \, Al_2O_3 (5 \, \text{mm}), \, \text{short pulse excitation}, \, E_{\text{pulse}} = 50 \, \text{mJ}\)
DBD Treatment of Diesel Exhaust
Electron Collision Reactions

Simulation of a DBD in Synthetic Diesel exhaust -
13.7 % O₂, 4.5 % CO₂, 5.3 % H₂O, 76.5 % N₂ - at
212 °C; discharge gap 3 mm.

Average electron energy 2-5 eV

Oxygen radical formation
O₂ + e → O + O + e

Oxidation of NO to NO₂, formation of O₃
DBD Treatment of Diesel Exhaust

Summary of the Plasma Chemistry

Electron collision

- **dissociation of oxygen**

 \[e + O_2 \rightarrow e + O + O \] (1)

Radical attack of HCs

- \[O + C_2H_4 \rightarrow HCO + CH_3 + H \] (2)
- \[CH_3 + O_2 \rightarrow CH_3O_2 \] (3)
- \[H + O_2 \rightarrow HO_2 \] (4)

Oxidation of NO

- \[RO_2 + NO \rightarrow NO_2 + RO \] (5)
- \[O + NO + M \rightarrow NO_2 + M \] (6)
- \[O + NO_2 \rightarrow NO + O_2 \] (7)

NO-Reduktion?

- \[NO + N \rightarrow N_2 + O \] (8)
- \[O_2 + N \rightarrow NO + O \] (T > 450 °C)
Storage of NH$_3$ on the SCR catalyst at T > 140 °C
- Injection of the urea solution
- Evaporation of water
- Thermal decomposition of urea to NH$_3$ and HNCO at T > 130 °C
- Hydrolysis of HNCO to NH$_3$ and CO$_2$ on the SCR-catalyst at T > 140 °C

Conventional SCR-process requires T > 200 °C
• SCR of NO at T > 200 °C
 4 NO + 4 NH$_3$ + O$_2$ → 4 N$_2$ + 6 H$_2$O \hspace{1cm} (C1)
Plasma Enhanced Selective Catalytic Reduction

- Fast SCR at $T < 200 \, ^\circ\text{C}$
 - NO and NO$_2$

- Slow side reactions of NO$_2$ at $T < 200 \, ^\circ\text{C}$

DBD-enhanced SCR treatment

DBD, discharge gap 4 mm, sinusoidal excitation, monolithic 100 cpsi catalyst, 1 % V$_2$O$_5$ in 90 %TiO$_2$, initial gas mixture 500 ppm NO, 500 ppm NH$_3$, in 13 % O$_2$ and 5 % H$_2$O blended with N$_2$.

\[
\begin{align*}
\text{NO + NO}_2 + 2 \text{NH}_3 & \rightarrow 2 \text{N}_2 + 3 \text{H}_2\text{O} \quad \text{(C2)} \\
6 \text{NO}_2 + 8 \text{NH}_3 & \rightarrow 7 \text{N}_2 + 12 \text{H}_2\text{O} \quad \text{(C3)} \\
2 \text{NO}_2 + 2 \text{NH}_3 & \rightarrow \text{N}_2 + \text{H}_2\text{O} + \text{NH}_4\text{NO}_3 \quad \text{(C4)}
\end{align*}
\]
Reaction Rate Coefficients of PE-SCR

Arrhenius plot of the rate coefficients

\[k(T) = A \cdot e^{-\frac{E_A}{RT}} \]

- \(E_A \): activation energy
- \(A \): pre-exponential factor

Mechanistic model (active surface site \(s - (V=O)^{2+} \))

- \(NH_3 + s = [H-s-NH_2] \)
- \(NO + [H-s-NH_2] \rightarrow [H-s-NH_2-NO] \rightarrow N_2 + H_2O + [H-s] \)
- \([H-s] + NO_2 \rightarrow \text{low T re-oxidation of active site}\)
Fast SCR Reaction

- Low T re-oxidation of active catalyst sites can also be achieved using ozone → Yoshioka (Japan) demonstrated efficient plasma enhanced SCR using “indirect” plasma treatment by means of ozonizer.
Test Bench Measurements on Plasma Enhanced SCR

DBD-treatment with $P \approx 250$ W
- NOx-reduction up to 21 g/h
- Energy costs 12 Wh/g NOx

Average values
- NOx-reduction 16.6 g/h
- Energy costs 16 Wh/g NOx
- Power requirements 2.1 % of engine break power
Formation of by-products in Diesel exhaust
Removal of HC (PE-SCR) ↔ Formation of CO

\[V_2O_5 \cdot WO_3/TiO_2 \text{ works as an oxidation catalyst for HC} \]

\[\text{it does not enhance the oxidation of CO efficiently} \]

\[\text{plasma treatment removes HC and generates CO} \]

\[\text{adding NH}_3 \text{ to the exhaust gas after plasma treatment increases HC-removal and CO-formation rate} \]

Experimental conditions: 2900 rpm, external load 2 kW, volume flow 530 slm, exhaust temperature 220 °C, catalyst temperature 170 °C
Formation of by-products in Diesel exhaust
Removal of NOx (PE-SCR)

- plasma induced NO-removal by oxidation to NO₂
- plasma induced formation of a by-product from NOₓ and HC
- catalytic reduction of NO₂ to NO

Experimental conditions: 2900 rpm, external load 2 kW, volume flow 530 slm, exhaust temperature 220 °C, catalyst temperature 170 °C
Formation of By-Products in Diesel exhaust Particulate Matter

EM picture of the light yellow powder precipitated on the walls of the tubing behind the SCR-reactor.

Energy dispersive X-ray scattering:
- Most of the PM consists of sulfates.
- Only a small fraction of PM can be attributed to NH_4NO_3.
Experiments Using Isotopically Marked 15NO
DBD-Treatment of NO in N$_2$-O$_2$-Mixtures

Plasma induced formation of
O-radicals
$\Rightarrow [^{14,15}NO]/[^{14,15}NO_2]$

N-radicals, N$_2$(A)
$\Rightarrow [^{14}NO_x]/[^{15}NO_x]$

Experimental conditions: DBD-reactor, discharge gap 0.5 mm, electrical excitation 19 kV, 40 Hz, specific energy 90 J/liter, synthetic gas mixture 500 ppm 15NO, 15 % O$_2$, blended with N$_2$, volume flow 1 slm

$[^{14}NO_x] = 42$ ppm
$[^{15}NO_x] = 61$ ppm
$[N_2O] = 4$ ppm
Plasma-Enhanced HC-SCR
Plasma Enhanced SCR Process

Issues connected to practical application

- Efficiency with higher hydrocarbons (fuel)
- Catalyst temperatures changing within minutes: Influence of plasma treatment on adsorption and desorption effects

adsorption: T_1

desorption: T_2
Small Scale Laboratory Experiments

Temperature programmed reactions
- temperature ramp applied to the complete PE-SCR system
 - $100 \, ^\circ\mathrm{C} < T < 600 \, ^\circ\mathrm{C}$, rate $\Delta T/\Delta t = +20/-10 \, ^\circ\mathrm{C} /\mathrm{min}$
- gas mixture supplied at constant flow rate (30 Nliters/min)
 - 82 % N$_2$, 8 % O$_2$, 10 % H$_2$O, 1620 ppm C$_{12}$ dodecane, 270 ppm NO
- DBD pre-treatment
 - coaxial DBD-reactor, structured HV-electrode, pulsed excitation
 - specific energy input 16 J/liter, residence time 40 ms
- catalytic after-treatment
 - coated Cordierite carrier (400 cpsi), SV = 50,000 hr$^{-1}$
Catalysts Tested

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Mass coated on carrier [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt-NH$_4$ZSM5</td>
<td>9.3</td>
</tr>
<tr>
<td>Pt-Al$_2$O$_3$</td>
<td>8.1</td>
</tr>
<tr>
<td>Pd-Al$_2$O$_3$</td>
<td>9.5</td>
</tr>
<tr>
<td>Cu-NaZSM5</td>
<td>5.2</td>
</tr>
<tr>
<td>CuO-Al$_2$O$_3$</td>
<td>8.1</td>
</tr>
<tr>
<td>Fe-NaZSM5</td>
<td>5.8</td>
</tr>
<tr>
<td>Ag-Al$_2$O$_3$</td>
<td>7.0</td>
</tr>
</tbody>
</table>

\[V = 36 \text{ cm}^3 \]
\[D = 25 \text{ mm} \]
\[D/L = 0.3 \]
Catalytic reduction of NO\textsubscript{x} on Ag-\(\gamma\)-Al\textsubscript{2}O\textsubscript{3} using dodecane as a reducing agent (\(SV = 50,000 \text{ h}^{-1}, \frac{dT}{dt} = +20/-10 \text{ °C/min}, c(\text{HC}) = 3000 \text{ ppm C1}\))
Plasma Induced Catalytic NOx Reduction Using HCs as a Reducing Agent

NOx-reduction: plasma induced conversion of NO to NO₂, formation of aldehydes from dodecane (PNL)
High T: Oxidation of dodecane is the rate limiting step
Adsorption of NO₂ has to be distinguished from NOₓ-reduction
Maximum NOx-Removal

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>maximum NOx-removal [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NTP</td>
</tr>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>Temp.</td>
</tr>
<tr>
<td>Pt-NH₄ZSM₅</td>
<td>46</td>
</tr>
<tr>
<td>Pt-Al₂O₃</td>
<td>16</td>
</tr>
<tr>
<td>Pd-Al₂O₃</td>
<td>7</td>
</tr>
<tr>
<td>Cu-NaZSM₅</td>
<td>61</td>
</tr>
<tr>
<td>CuO-Al₂O₃</td>
<td>26</td>
</tr>
<tr>
<td>Fe-NaZSM₅</td>
<td>37</td>
</tr>
<tr>
<td>Ag-Al₂O₃</td>
<td>56</td>
</tr>
</tbody>
</table>

Large differences between rise and fall values of deNOx:

- Adsorption and desorption effects are important

NO₂ adsorption

HC adsorption

HC and NO₂ adsorption
Average NOx-removal

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>average NOₓ-removal [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NTP</td>
</tr>
<tr>
<td></td>
<td>Temp.</td>
</tr>
<tr>
<td>Pt-NH₄ZSM₅</td>
<td>13</td>
</tr>
<tr>
<td>Pt-Al₂O₃</td>
<td>13</td>
</tr>
<tr>
<td>Pd-Al₂O₃</td>
<td>0</td>
</tr>
<tr>
<td>Cu-NaZSM₅</td>
<td>21</td>
</tr>
<tr>
<td>CuO-Al₂O₃</td>
<td>2</td>
</tr>
<tr>
<td>Fe-NaZSM₅</td>
<td>16</td>
</tr>
<tr>
<td>Ag-Al₂O₃</td>
<td>20</td>
</tr>
</tbody>
</table>

(determined from time-integrated NOx-balance)

Large difference between rise and fall values:

- Adsorption and desorption effects are important

NO₂ adsorption

HC adsorption

HC and NO₂ adsorption
Plasma catalytic hybrid processes can successfully be applied for the abatement of odorous & noxious compounds from off-gases

- Hybrid processes were demonstrated (Plasma enhanced selective catalytic NOx reduction; Plasma enhanced catalytic oxidation of HCs & VOCs)

Good energy efficiency, low operation costs can be expected

- Specific energies below 15 J/liter were found for automotive applications

Plasma-catalytic hybrid reactor & power supply concepts are available

- 2-stage reactors easy to realize; 1-stage: more R&D required
- Semiconductor power supplies

Sorption properties of catalyst are important

- Catalyst needs to be tailored for application (intermediate product generated by plasma, plasma regeneration of catalyst, ...
Thank you for your attention!

Renato Andorf (DC AG)
Rudolf Birckigt
Stefan Bröer
Thomas Hammer
Werner Hartmann
Tetsuo Kishimoto
Bernd Krutzsch (DC AG)
Hans Miessner (IUT)
Rolf Rudolph (IUT)
Carsten Plog (DC AG)
Michael Römheld
Measurement of the Plasma Input Power of a DBD-Reactor under Sinusoidal Excitation

Reactor capacity 100 pF, synthetic air 30 Nliter/min, 150 °C

- Measurement of reactor charge and voltage
- Energy input per cycle = Area enclosed by the Lissajous figure
- Smooth edges: Dissipation due to dielectric losses

\[E_{\text{cycle}} = \int U dQ \]
Measurement of the Plasma Input Power of a DBD-Reactor under Pulsed Excitation

Measurement of reactor voltage and current

Plasma energy input:
Integral of reactor power

\[E_{\text{pulse}} = \int_{t_0}^{t_1} U(t) \cdot I(t) \, dt \]

Energy dissipation due to dielectric losses: Deviation from voltage-charge relation, before gas discharge breakdown occurs

\[\frac{1}{C_\text{reactor}} \times \int_{t_0}^{t_1} I(t) \, dt \neq U(t_1) \]
Figure 3 Catalyst mapping in terms of enhancement factor (EF) and adsorption capacity of benzene (100°C, 200 ppm benzene).

International Symposium on Non-Thermal/Thermal Plasma Pollution Control Technology & Sustainable Energy, ISNTP-7
June 21-25, 2010, St. John’s, Newfoundland, Canada
Hyun-Ha Kim, Atsushi Ogata (National Institute of Advanced Industrial Science and Technology (AIST)):
Catalyst Screening for the VOC Decomposition using Adsorption and Oxygen Plasma
Characterization of the DBD

Pulsed electrical excitation using a solid state power supply

Efficient plasma-chemical conversion of NO in N₂
Plasma-Chemical Conversion

Temperature fixed to 200 °C

- at 16 J/liter nearly complete conversion of NO to NO₂
- low conversion of dodecane

Fixed to 16 J/liter
- at 300 °C nearly complete conversion of dodecane
- efficiency of NO-conversion to NO₂ decreases for T > 300 °C